The compound you've described, **[3-(2-chloro-6-ethoxy-3-quinolinyl)-5-phenyl-3,4-dihydropyrazol-2-yl]-thiophen-2-ylmethanone**, is a complex organic molecule. It's not something you'd encounter in everyday life.
Here's a breakdown:
* **Structure:** The name describes a specific arrangement of atoms and functional groups. It contains:
* A **quinoline** ring (a fused benzene and pyridine ring)
* A **dihydropyrazole** ring (a five-membered ring with two double bonds and two hydrogens)
* A **thiophene** ring (a five-membered ring with a sulfur atom)
* Various substituents: chlorine, ethoxy group, phenyl group.
* **Importance for Research:** Given the complex structure, this molecule is likely a candidate for **drug discovery research**. It's common for researchers to synthesize and test compounds with these kinds of features because they can potentially interact with biological targets (proteins, enzymes, etc.).
Here's why it might be important:
* **Quinoline derivatives:** Quinoline-containing molecules are often found in pharmaceuticals, having various biological activities like antimalarial, antibacterial, and anti-cancer properties.
* **Heterocyclic rings:** The dihydropyrazole and thiophene rings are common structural motifs in drug candidates, often contributing to binding affinity and pharmacological activity.
* **Substituents:** The chlorine, ethoxy, and phenyl groups can modify the compound's shape, reactivity, and binding properties.
**Without further context, it's impossible to say definitively why this specific compound is being researched.** Its importance depends on its specific properties and its potential application in a particular research field.
**To learn more about this compound's specific significance, you'd need:**
* **The source of this information:** Where did you encounter this compound name?
* **Research area:** Is it being studied for cancer, infection, inflammation, or something else?
Let me know if you have additional information, and I can provide a more detailed answer.
ID Source | ID |
---|---|
PubMed CID | 4366066 |
CHEMBL ID | 1456753 |
CHEBI ID | 120843 |
Synonym |
---|
HMS2589K09 |
MLS000591989 |
smr000218605 |
[5-(2-chloro-6-ethoxy-quinolin-3-yl)-3-phenyl-4,5-dihydro-pyrazol-1-yl]-thiophen-2-yl-methanone |
CHEBI:120843 |
STK853541 |
[5-(2-chloro-6-ethoxyquinolin-3-yl)-3-phenyl-4,5-dihydro-1h-pyrazol-1-yl](thiophen-2-yl)methanone |
AKOS001687728 |
[3-(2-chloro-6-ethoxyquinolin-3-yl)-5-phenyl-3,4-dihydropyrazol-2-yl]-thiophen-2-ylmethanone |
685135-50-6 |
F1292-0129 |
(5-(2-chloro-6-ethoxyquinolin-3-yl)-3-phenyl-4,5-dihydro-1h-pyrazol-1-yl)(thiophen-2-yl)methanone |
MLS003902711 |
AKOS022006352 |
CHEMBL1456753 |
2-chloro-6-ethoxy-3-[3-phenyl-1-(thiophene-2-carbonyl)-4,5-dihydro-1h-pyrazol-5-yl]quinoline |
[3-(2-chloro-6-ethoxy-3-quinolinyl)-5-phenyl-3,4-dihydropyrazol-2-yl]-thiophen-2-ylmethanone |
Q27208987 |
Class | Description |
---|---|
quinolines | A class of aromatic heterocyclic compounds each of which contains a benzene ring ortho fused to carbons 2 and 3 of a pyridine ring. |
organochlorine compound | An organochlorine compound is a compound containing at least one carbon-chlorine bond. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASE | Homo sapiens (human) | Potency | 8.9125 | 0.0032 | 45.4673 | 12,589.2998 | AID2517 |
Chain A, Cruzipain | Trypanosoma cruzi | Potency | 7.9433 | 0.0020 | 14.6779 | 39.8107 | AID1476 |
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 4.4668 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
TDP1 protein | Homo sapiens (human) | Potency | 29.0929 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
67.9K protein | Vaccinia virus | Potency | 12.5893 | 0.0001 | 8.4406 | 100.0000 | AID720579 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 25.1189 | 0.0018 | 15.6638 | 39.8107 | AID894 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 112.2020 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 2.5929 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 3.9811 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |